Mathematics A : Examples

< Calculus >

1. Consider the following function of two variables

$$
f(x, y) = x^3 - y^3 - 3x + 3y
$$

For this function, the following equations are satisfied at points (a,b) ,

$$
\frac{\partial f}{\partial x} = 0 \,, \quad \frac{\partial f}{\partial y} = 0 \,.
$$

(1) Find ∂*f* ∂*x* , ∂*f* ∂*y* $\frac{\partial^2 f}{\partial x^2}$ ∂*x* $\int \frac{1}{2}$, $\frac{\partial^2 f}{\partial x \partial y}$ and $\frac{\partial^2 f}{\partial y^2}$ $\frac{\partial}{\partial y^2}$.

(2) Find points (a,b) and then calculate $\frac{\partial^2 f}{\partial a^2}$ $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial x \partial y}$ and $\partial^2 f$ ∂*y* $\frac{1}{2}$ at (a,b) .

- (3) Write second-order approximation of $f(x, y)$ at (a,b) by using Taylor expansion.
- (4) Find relative maximum, relative minimum and saddle points using the equation obtained in question (3).
- 2. Consider a function of two variables, $f(x, y)$, for which the following equations are satisfied at points (a,b) ,

$$
\frac{\partial f}{\partial x} = 0 \,, \quad \frac{\partial f}{\partial y} = 0 \,.
$$

(1) Find the 2×2 matrix *H* satisfying the following equation,

$$
f(x,y) = f(a,b) + \frac{1}{2} \left(x-a \quad y-b \right) H \left(\begin{array}{c} x-a \\ y-b \end{array} \right),
$$

which is derived by using second-order approximation of Taylor expansion at (a,b) .

(2) Consider *H* in problem (1) has two different eigenvalues λ_1 and λ_2 , and corresponding eigenvectors p_1 and p_2 . Show the following equation,

$$
\left(\begin{array}{cc} \boldsymbol{p}_1 & \boldsymbol{p}_2 \end{array}\right)^{-1} = \left(\begin{array}{cc} \boldsymbol{p}_1 & \boldsymbol{p}_2 \end{array}\right)^T.
$$

Here the magnitude of the eigenvectors is unit.

(3) By usign the relationship given in problem (2), show the following equation,

$$
f(x,y) = f(a,b) + \frac{1}{2} \begin{pmatrix} X & Y \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}.
$$

And then find the condition on λ_1 and λ_2 when the point (a,b) becomes a relative maximum point.

(4) Find relative maximum points of the following function,

$$
f(x, y) = x^4 - 2x^2y^2 - y^4 - 2x^2 + 2y^2.
$$

< Linear algebra >

1. The 2×2 matrix *A* is given by

$$
A = \left(\begin{array}{cc} 4 & 2 \\ -1 & 1 \end{array}\right)
$$

- (1) Find the eigenvalues and corresponding eigenvectors of *A* .
- (2) Find the 2×2 diagonal matrix *D* and 2×2 matrix *P*, which satisfy $A = PDP^{-1}$.
- (3) Find A^n .
- 2. The 3×3 matrix A is given by

$$
A = \left(\begin{array}{rrr} 0 & -2 & 2 \\ -2 & 1 & -1 \\ 2 & -1 & 1 \end{array}\right)
$$

(1) Find the eigenvalues and corresponding eigenvectors of A .

 $\ddot{}$

(2) Find the 3 × 3 diagonal matrix *D* and 3 × 3 matrix *P* which satisfy $A = PDP^{-1}$. (3) Find A^n .

3. The 3×3 matrix A is given by

$$
A = \left(\begin{array}{rrr} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 2 & -1 & -3 \end{array}\right)
$$

.

- (1) Find three eigenvalues of matrix *A* , λ_1 , λ_2 , λ_3 ($\lambda_1 < \lambda_2 < \lambda_3$) and corresponding eigenvectors \boldsymbol{p}_1 , \boldsymbol{p}_2 , \boldsymbol{p}_3 , respectively. Here $|\boldsymbol{p}_1| = |\boldsymbol{p}_2| = |\boldsymbol{p}_3| = 1$
- (2) Find matrices satisfying $A = PDP^{-1}$ by using results of problem (1). Here *D* is 3×3 diagonal matrix, and *P* is 3× 3 diagonal matrix.
- (3) Find A^n .

1. In the Cartesian coordinate system (x, y, z) , the vector field is given by

$$
A = (x - y + y2 + z2, y - z + x2 + z2, -x + z + x2 + y2 + 2y(-x + z)),
$$

and the area of region *D* is defined by

$$
D = \{(x, y, z) | y^2 + z^2 \le 1\}.
$$

- (1)Calculate $\nabla \cdot A$ and $\nabla \times A$.
- (2) Draw the region *D* .
- (3) Let *S* be the plane of $x + z = 1$ in the region *D*. Obtain both the area and shape of *S*.
- (4) Calculate $\int_{S} \nabla \times A \cdot n dS$, where *S* is the reigon defined in question(3) and *n* is the unit normal vector of *S* with a non-negative *z* component.

Evaluate $\int_{C} A \cdot dr$. Here *C* is a loop around the region *S* obtained in question (3).

2. In the Cartesian coordinate system(*x*, *y*,*z*) , the area of region *D* and the plane *S* are defined by

Region:
$$
D = \{(x, y, z) | x^2 + y^2 + z^2 \le 1\}
$$
, Plane: $S = \{(x, y, z) | x + z = 1\}$.

Let S_D be the plane *S* in the region *D*. The vector field *A* is given by

$$
A=(-y,x-z,y)
$$

- (1) Calculate $\nabla \times A$.
- (2) Calculate the distance between the plane *S* and origin.
- (3) Obtain both the shape and area of S_p .
- (4) Calculate $\int_{S_D} \nabla \times A \cdot n dS$, where *n* is the unit normal vector of *S* with a non-negative *z* component. And then, obtain $\int_{C} A \cdot dr$ by using Stokes theory. Here *C* is a loop around the region S_p .
- (5) Calculate directly $\int_C \mathbf{A} \cdot d\mathbf{r}$. Here *C* is a loop defined in problem (4).

3. In the Cartesian coordinate system (x, y, z) , the surface *S* is defined by

$$
S = \{(x, y, z) \mid x^2 + y^2 + z^2 = 4, x \ge 0, y \ge 0, z \ge 1\}
$$

A point $p(x, y, z)$ is locating on the *S*, and its position vector is *r*. And $u = x, v = y$.

- (1) Express *z* by using *u* and *v*, and then find two vectors, $\frac{\partial \mathbf{r}}{\partial x}$ $\frac{\partial \mathbf{r}}{\partial u}$ and $\frac{\partial \mathbf{r}}{\partial v}$ ∂*v* at point *p* .
- (2) Using the results of problem (1), find normal unit vector, \boldsymbol{n} on the surface *S*. Here the z-component of \boldsymbol{n} is not negative.
- (3) Surface area of *S* is calculated by the following equation,

$$
\int_{S} dS = \int_{S^*} f(u, v) du dv.
$$

Draw the integration area, S^* . And find $f(u, v)$ to calculate the above integration.